

TARGET MATHEMATICS THE EXCELLENCE KEY AGYAT GUPTA (M.Sc., M.Phil.)

CODE:- AG-TS-7-7936 REGNO:-TMC-D/79/89/36

GENERAL INSTRUCTIONS:

- 1. All question are compulsory.
- The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- **6.** Please check that this question paper contains 5 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

Pre-Board Examination 2012 -13

 Time : 3 Hours
 अधिकतम समय : 3

 Maximum Marks : 100
 अधिकतम अंक : 100

 Total No. Of Pages :6
 कुल पृष्ठों की संख्या : 6

Total N	o. Of	Pages	:6				कुल पृष्ठों	की संख्या	: 6
CLASS – XII				CBSE	<i>MATHEMATICS</i>				
					PART -	A			
Q.1	If	*	is	a	binary	operation	given	by	*:
	$R \times R \rightarrow R, a * b = a + b^2$, then (-2)*5 is								
	(a) -52 (b) 23 (c) 64 (d) 13 ANS : B								

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

V ISIC U	is at : http://www.agyatgupta.com; Eman:agyat99@gman.com
Q.2	If $\sin^{-1}:[-1,1] \to \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is a function, then value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is
	(a) $\frac{-\pi}{6}$ (b) $\frac{-\pi}{6}$ (c) $\frac{5\pi}{6}$ (d) $\frac{7\pi}{6}$ ANS : D
Q.3	(a) $\frac{-\pi}{6}$ (b) $\frac{-\pi}{6}$ (c) $\frac{5\pi}{6}$ (d) $\frac{7\pi}{6}$ ANS : D Given that $\begin{pmatrix} 9 & 6 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$. Applying elementary row
	transformation $R_1 \rightarrow R_1 - 2R_2$ on both sides, we get
	(a) $\begin{pmatrix} 3 & 6 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -4 \\ 1 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 6 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$
Q.4	If A and B are square matrices of order 3 such that $ A = -1$ and $ B $
	= 4, then what is the value of $ 3(AB) $? ANS: - 108
Q.5	Write the number of all one – one function from the set A with
	Cartesian number 4 to itself . ANS : $-4! = 24$
NOTE:	Fill in the blanks in each of the Questions 6 to 8.
Q.6	The order & degree of the differential equation
	$\left(\frac{d^2y}{dx^2}\right)^5 + \frac{4\left(\frac{d^2y}{dx^2}\right)^3}{\left(\frac{d^3y}{dx^3}\right)} + \left(\frac{d^3y}{dx^3}\right) = x^2 - 1 \text{ isANS : order 3 & degree 2}$ The integrating factor for solving the linear differential equation
Q.7	The integrating factor for solving the linear differential equation
	$x \frac{dy}{dx} - y = x^2 is$ ANS: 1/x
Q.8	Prove that a powerful bomb shot along the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ of fire
	will never hit a helicopter flying in the plane $2x + 4y - 4z + 11 = 0$. ans

	: prove that line and plane are parallel to each other.			
Q.9	A bird is located at the point A(3, 2, 8) in space. It wants to move to the plane whose equation is given by $3 \times 2y + 6 \times 2 + 16 = 0$ in the shortest time. Find the distance she covered. Ans: 11 unit			
Q.10	The confidence gained by playing x games of tennis at a trial function			
	is given by $C(x) = 11 + 15x + 6x^2 - x^3$. Find the marginal confidence			
	gained after playing 5 games. ans: 0			
	PART - B			
Q.11	Let n be a fixed positive integer and R be the relation in Z defined			
	as a R b if and only if a – b is divisible by n, $\forall a,b \in Z$. Show			
	that R is an equivalence relation Ans:			
	 (i) Since a R a, ∀ a ∈ Z, and because 0 is divisible by n, therefore R is reflexive. 			
	(ii) $a R b \Rightarrow a - b$ is divisible by n , then $b - a$, is divisible by n , so $b R a$. Hence R is symmetric.			
	(iii) Let $a \ R \ b$ and $b \ R \ c$, for $a,b,c,\in {\bf Z}$. Then $a-b=n \ p, \ b-c=n \ q,$ for some $p, \ q \in {\bf Z}$			
	Therefore, $a-c=n\ (p+q)$ and so $a \ R \ c$.			
	Hence R is reflexive and so equivalence relation.			
Q.12	Prove that $\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3$. ans:			

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

LHS =
$$\tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} + \tan^{-1}\frac{1}{18}$$

= $\tan^{-1}\frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{8}} + \tan^{-1}\frac{1}{18} = \tan^{-1}\left(\frac{15}{55}\right) + \tan^{-1}\frac{1}{18}$
= $\tan^{-1}\frac{3}{11} + \tan^{-1}\frac{1}{18} = \tan^{-1}\frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \cdot \frac{1}{18}} = \tan^{-1}\frac{65}{195}$

$$= \tan^{-1} \frac{1}{3} = \cot^{-1} 3 = \text{RHS}$$

OR

Solve the equation

$$\tan^{-1}(2+x) + \tan^{-1}(2-x) = \tan^{-1}\frac{2}{3}, -\sqrt{3} > x > \sqrt{3}.$$
 ans :

Since
$$\tan^{-1}(2+x) + \tan^{-1}(2-x) = \tan^{-1}\frac{2}{3}$$

Therefore,
$$\tan^{-1} \frac{(2+x) + (2-x)}{1 - (2+x)(2-x)} = \tan^{-1} \frac{2}{3}$$

Thus
$$\frac{4}{x^2 - 3} = \frac{2}{3}$$

$$\Rightarrow x^2 = 9 \Rightarrow x = \pm 3$$

Q.13 There are 40 hardworking scholars in a class. Out of which 10 are sports-persons. Three scholars are selected at random out of them. Write the probability distribution for selected persons who are sportspersons. Find the mean of distribution. Explain the importance of sports

in education.	Ans:
Duobobility l	Dietwiby

Probability Distribution:

X	0	1	2	2
P(X)	406/988	435/988	135/988	12/988

$$Mean = 741/988 = 3/4$$
.

Importance of

sports in Education: It takes care of the mental and physical fitness of the body. It is helpful for the growth of student in the field of studies as well.

Q.14 |x+2 + x+6 + x-1|Solve for x, $\begin{vmatrix} x+6 & x-1 & x+2 \\ x-1 & x+2 & x+6 \end{vmatrix} = 0$ ans

Given,
$$\begin{vmatrix} x+2 & x+6 & x-1 \\ x+6 & x-1 & x+2 \\ x-1 & x+2 & x+6 \end{vmatrix} = 0$$

Using
$$R_2 \to R_2 - R_1$$

 $R_3 \to R_3 - R_1$, we get $\begin{vmatrix} x+2 & x+6 & x-1 \\ 4 & -7 & 3 \\ -3 & -4 & 7 \end{vmatrix} = 0$

Using
$$C_2 \to C_2 - C_1$$

 $C_3 \to C_3 - C_1$, we get $\begin{vmatrix} x+2 & 4 & -3 \\ 4 & -11 & -1 \\ -3 & -1 & 10 \end{vmatrix} = 0$

Therefore,
$$(x + 2) (-111) - 4 (37) - 3 (-37) = 0$$

0.15 Determine the value of K so that the function:

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

$$f(x) = \begin{cases} \frac{k \cdot \cos 2x}{\pi - 4x} & if x \neq \frac{\pi}{4} \\ 5 & if x = \frac{\pi}{4} \end{cases}$$
 is continuous at $x = \frac{\pi}{4}$.

Since f is continous at $x = \frac{\pi}{4}$, we have $\lim_{x \to \frac{\pi}{4}} f(x) = 5$.

Now
$$\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{k \cdot \cos 2x}{\pi - 4x} = \lim_{y \to 0} \frac{k \cos 2(\frac{\pi}{4} - y)}{\pi - 4(\frac{\pi}{4} - y)}$$
, where $\frac{\pi}{4} - x = y$,

$$= \lim_{y \to 0} \frac{k \cdot \cos(\frac{\pi}{2} - 2y)}{\pi - \pi + 4y} = \lim_{y \to 0} \frac{(k \sin 2y)}{2 \cdot 2y} = \frac{k}{2}$$

Therefore,
$$\frac{k}{2} = 5 \implies k = 10$$
.

Q.16 If
$$x = \frac{1 + \log t}{t^2}$$
, $y = \frac{3 + 2\log t}{t}$ prove that $yy_1 - 2xy_1^2 = 1$.

If
$$y = e^{a\cos^{-1}x}$$
, Show that $(1-x^2)\frac{d^2y}{d^2x} - s\frac{dy}{dx} - a^2y = 0$.

$$y = e^{a\cos^{-1}x} \Rightarrow \frac{dy}{dx} = e^{a\cos^{-1}x} \frac{(-a)}{\sqrt{1-x^2}}$$

ans:

Therefore,

$$\sqrt{1-x^2} \frac{dy}{dx} = -ay$$
.....(1) Differentiating again w.r.t. x, we get

$$\sqrt{1-x^2} \frac{d^2y}{dx^2} - \frac{x}{\sqrt{1-x^2}} \frac{dy}{dx} = -\frac{ady}{dx}$$

$$\Rightarrow (1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} = -a\sqrt{1-x^2} \frac{dy}{dx}$$

$$= -a(-ay) \quad \text{[from 1]}$$
Hence
$$(1-x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - a^2y = 0$$

Q.17 Find the equation of the tangent to the curve $x = \sin 3t$, $y = \cos 2t$ at

$$t = \frac{\pi}{4} \cdot \frac{dx}{dt} = +3\cos 3t, \frac{dy}{dt} = -2\sin 2t$$

Therefore,
$$\frac{dy}{dx} = -\frac{2\sin 2t}{3\cos 3t}$$
, and $\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{-2\sin\frac{\pi}{2}}{3\cos 3\frac{\pi}{4}} = \frac{-2}{3\cdot(-\frac{1}{\sqrt{2}})} = \frac{2\sqrt{2}}{3}$

Also
$$x = \sin 3t = \sin 3 \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
 and $y = \cos 2t = \cos \frac{\pi}{2} = 0$.

Therefore, Point is $\left(\frac{1}{\sqrt{2}}, 0\right)$

Point is
$$\left(\frac{1}{\sqrt{2}}, 0\right)$$

Hence, equation of tangent is $y - 0 = \frac{2\sqrt{2}}{3} \left(x - \frac{1}{\sqrt{2}} \right)$ Therefore

$$2\sqrt{2}x-3y-2=0$$

 \mathbf{OR}

Find the intervals in which the function

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

 $f(x) = \sin^4 x + \cos^4 x, 0 < x < \frac{\pi}{2}$, is increasing or decreasing .ans: $f'(x) = 4 \sin^3 x \cos x - 4 \cos^3 x \sin x$ $= -4 \sin x \cos x (\cos^2 x - \sin^2 x)$ $= - \sin 4x$. Therefore. $f'(x) = 0 \Rightarrow 4x = n\pi \Rightarrow x = n\frac{\pi}{4}$ Now, for $0 < x < \frac{\pi}{4}$, Therefore, f is strictly decreasing in $(0, \frac{\pi}{4})$ Similarly, we can show that f is strictly increasing in $(\frac{\pi}{4}, \frac{\pi}{2})$ Q.18 Evaluate $\int_{0}^{\frac{\pi}{6}} \sin^4 x \cos^3 x dx.$ Ans $I = \int_{0}^{\frac{\pi}{6}} \sin^4 x \cos^3 x dx$ $= \int_0^{\frac{\pi}{6}} \sin^4 x \, (1 - \sin^2 x) \cos x \, dx$ $= \int_0^{\frac{1}{2}} t^4 (1 - t^2) \, dt, \text{ where } \sin x = t$ $= \int_0^{\frac{1}{2}} (t^4 - t^6) dt = \left[\frac{t^5}{5} - \frac{t^7}{7} \right]_0^{\frac{1}{2}} = \frac{1}{5} \left(\frac{1}{2} \right)^5 - \frac{1}{7} \left(\frac{1}{2} \right)^7 = \frac{1}{32} \left(\frac{1}{5} - \frac{1}{28} \right) = \frac{23}{4480}$ **Q.19** Evaluate $\int \frac{3x+1}{2x^2-2x+3} dx$ Ans: $I = \int \frac{3x+1}{2x^2-2x+3} dx = \int \frac{\frac{3}{4}(4x-2)+\frac{5}{2}}{2x^2-2x+3} dx$

Visit us	at: http://www.agyatgupta.com; Email:agyat99@gmail.com
	$= \frac{3}{4} \int \frac{4x - 2}{2x^2 - 2x + 3} dx + \frac{5}{4} \int \frac{1}{x^2 - x + \frac{3}{2}} dx$ $= \frac{3}{4} \log 2x^2 - 2x + 3 + \frac{5}{4} \frac{2}{\sqrt{5}} \tan^{-1} \frac{2x - 1}{\sqrt{5}} + c$
	$= \frac{3}{4} \log 2x^2 - 2x + 3 + \frac{\sqrt{5}}{2} \tan^{-1} \frac{2x - 1}{\sqrt{5}} + c$ OR Evaluate:
	$\int x(\log x)^2 dx \cdot \text{ans} \qquad : \qquad I = \int x(\log x)^2 \cdot dx = \int (\log x)^2 x dx$
	$= (\log x)^2 \frac{x^2}{2} - \int 2\log x \frac{1}{x} \frac{x^2}{2} dx = \frac{x^2}{2} (\log x)^2 - \int \log x \cdot x dx$
	$= \frac{x^2}{2} (\log x)^2 - \left[\log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} dx \right]$
	$= \frac{x^2}{2} (\log x)^2 - \frac{x^2}{2} \log x + \frac{x^2}{4} + c$
Q.20	Find a particular solution of the differential equation:
	$\frac{x}{2} + \frac{x}{y} dy + (x + 2) + \frac{x}{y} dy = 0$
	$2 ye^{-y} dx + (y - 2xe^{-y}) dy = 0$, given that $x = 0$ when $y = 0$
	1.ans: Given differential equation can be written as \underline{x}
	$\frac{dx}{dy} = \frac{2x e^{\overline{y}} - y}{2y \cdot e^{\overline{y}}}$
	Putting $\frac{x}{y} = v \implies x = vy \implies \frac{dx}{dy} = v + y \frac{dv}{dy}$
	Therefore $v + v \frac{dv}{dx} = \frac{2v y e^v - y}{dx} = \frac{2v e^v - 1}{2v e^v - 1}$

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

Visit us at : intip://www. agyagupha.com; Email:agyar99@gmail.com

$$y \frac{dv}{dv} = \frac{2ve^v - 1}{2e^v} - v$$
 Hence $2e^v dv = -\frac{dy}{y}$
 $\Rightarrow 2e^v = -\log|y| + c$ or $2e^{\frac{x}{y}} = -\log|y| + c$ when $x = 0, y = 1 \Rightarrow C = 2$ Therefore, the particular solution is

 $2e^{\frac{x}{y}} = -\log|y| + 2$

Q.21 If $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$, then find the projection of $\vec{b} + \vec{c}$ along \vec{a} . What are benefits of speaking truth? \vec{a} and $\vec{b} + \vec{c} = (\hat{i} + 2\hat{j} - 3\hat{k}) + (2\hat{i} - \hat{j} + 4\hat{k}) = 3\hat{i} + \hat{j} + \hat{k}$
 $\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}$ Projection of $(\vec{b} + \vec{c})$ along $\vec{a} = \frac{(\vec{b} + \vec{c}) \cdot \vec{a}}{|\vec{a}|}$ is

 $\frac{6 - 2 + 1}{\sqrt{4 + 4 + 1}} = \frac{5}{3}$ units

Ans: In case, you always speak the truth (a)People will always believe you. (b)There is no more stress on you. (c)You will have a good recognition. There can be multiple answers to the value based questions. Students may have their own opinion about answering them, there is no specific solution. Marks would be given for all sensible answers.

Q.22 Determine the vector equation of a line passing through $(1, 2, -4)$ and perpendicular to the two lines $\vec{r} = (8\hat{i} - 16\hat{j} + 10\hat{k}) + \lambda(3\hat{i} - 16\hat{j} + 7\hat{k})$ & $(15\hat{i} + 29\hat{j} + 5\hat{k}) + \mu(3i + 8\hat{j} - 5\hat{k})$. ans: A vector perpendicular to the two lines is given as

2ye"

 $2e^{v}$

$$(3\hat{i} - 16\hat{j} + 7\hat{k}) \times (3\hat{i} + 8\hat{j} - 5\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{vmatrix}$$

$$= 24\hat{i} + 36\hat{j} + 72\hat{k} \text{ or } 12(2\hat{i} + 3\hat{j} + 6\hat{k}) \text{ Therefore, Equation of required line is}$$

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$$

PART - C

Q.23 State the condition for matrix A is invertable .Find A^{-1} , where A =

$$3z = 2$$
, $x + y + z = 1$, $3x + y - 2z = 5$, ans: $|A| = 4(-3) - 1(-7) + 3(-3)$

$$3z = 2, x + y + z = 1, 3x + y - 2z = 5, \text{ ans: } |A| = 4 (-3) - 1 (-7) + 3$$

$$1) = -12 + 7 - 3 = -8$$
Therefore, $A^{-1} = -\frac{1}{8} \begin{pmatrix} -3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2 \end{pmatrix}$
Given
$$\begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$$
equations can be written as

$$\begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$$

$$\Rightarrow A'. X = B \Rightarrow X = (A'^{-1})B \\ = (A^{-1})'B \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{-1}{8} \begin{pmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$$

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

$$= -\frac{1}{8} \begin{pmatrix} -6 & +7 & -5 = & -4 \\ 10 & -17 & -5 = & -12 \\ -4 & +2 & +10 = & 8 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ -1 \end{pmatrix}$$
 Therefore, $x = \frac{1}{2}$, $y = \frac{3}{2}$, $z = -1$

OR

Discuss whether the matrix A is invertable or not if invertable then using elementary transformations, find A^{-1} , where

$$A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}.$$

Writing
$$A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A$$

$$R_2 \to R_2 + R_1 \Rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 5 & -2 \\ 0 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A$$

$$R_2 \to R_2 + 2R_3 \Rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} A$$

$$R_3 \to R_3 + 2R_2 \Rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$$

VISIT US	at : http://www. agyatgupta.com; Email:agyat99@gmail.com
	$R_1 \to R_1 + 2R_3 \Rightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 4 & 10 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix} A$
	$R_1 \to R_1 - 2R_2 \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix} A \Rightarrow A^{-1} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$
Q.24	Let AP and BQ be two vertical poles at points A and B, respectively. If AP = 16 m, BQ = 22 m and AB = 20 m, then find the distance of a point R on AB from the point A such that $RP^2 + RQ^2$
Q.25	Evaluate $\int_{1}^{3} (3x^{2} + 2x + 5) dx$ by the method of limit of sum.ans : $I = \int_{1}^{3} (3x^{2} + 2x + 5) dx = \int_{1}^{3} f(x) dx$ $= \lim_{h \to 0} h [f(1) + f(1+h) + f(1+2h) + \dots + f(1+(n-1)h)] \dots (i)$ where $h = \frac{3-1}{2} = \frac{2}{3}$

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

$$f(1) = 3 + 2 + 5 = 10$$

$$f(1+h) = 3 + 3h^{2} + 6h + 2 + 2h + 5 = 10 + 8h + 3h^{2}$$

$$f(1+2h) = 3 + 12h^{2} + 12h + 2 + 4h + 5 = 10 + 8 \cdot 2 \cdot h + 3 \cdot 2^{2} \cdot h^{2}$$

$$f(1+(n-1)h) = 10 + 8(n-1)h + 3(n-1)^{2}h^{2}$$

$$I = \lim_{n \to \infty} h \left[10n + 8h \frac{n(n-1)}{2} + 3h^{2} \frac{n(n-1)(2n-1)}{6} \right]$$

$$= \lim_{n \to \infty} \frac{2}{n} \left[10n + \frac{16}{n} \frac{n(n-1)}{2} + \frac{12}{n^{2}} \frac{n(n-1)(2n-1)}{6} \right]$$

$$= \lim_{n \to \infty} \frac{2}{n} \left[10n + 8(n-1)\frac{2}{n}(n-1)(2n-1) \right]$$

$$= \lim_{n \to \infty} 2 \left[10 + 8(1 - \frac{1}{n}) + 2(1 - \frac{1}{n})(2 - \frac{1}{n}) \right]$$

$$= 2 \left[10 + 8 + 4 \right] = 44$$

Q.26	Using integration, find the group of the triangle bounded by the lines y					
Q.20	Using integration, find the area of the triangle bounded by the lines y =					
	2x + 1, $y = 3x + 1$ and $x = 4$. Ans Required Area					
	$= \int_{0}^{4} (3x+1)dx - \int_{0}^{4} (2x+1)dx = 8unit^{2}$					
	$\int_{0}^{\infty} \frac{(2x+1)ax}{0} \int_{0}^{\infty} (2x+1)a$					
Q.27	A line with direction numbers <2, 7, -5> is drawn to intersect the lines					
	$\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$ and $\frac{x+3}{-3} = \frac{y-3}{2} = \frac{z-6}{4}$. Find the co-					
	ordinates of the points of intersection and the length intercepted o it.					
	ANS. $(2, 8, -3)$, $(0, 1, 2)$; $\sqrt{78}$.					
	OR					
	A bird at A(7, 14, 5) in space wants to reach a point P on the plane $2x + 1$					
	4y - z = 2 when AP is least. Find the position of P and also the distance					
	AP travelled by the bird. Ans: find foot of perpendicular. P(1, 2, 8).					
	Also AP = $\sqrt{189} = 3\sqrt{21}$					
Q.28	There is a group of 50 people who are patriotic out of which 20 believe					
	in non violence. Two persons are selected at random out of them, write					
	the probability distribution for the selected persons who are non					
	violent. Also find the mean of the distribution. Explain the importance					
	violent. Also find the mean of the distribution. Explain the importance					
	of Non violence in patriotism. ANS: Let x denote the number of non-					
	of Non violence in patriotism. ANS: Let x denote the number of non-					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values $0, 1, 2$ non-violent 20: Violent patriotism: 30 ; $P(x = 0) = (30x29)/50x49 = 87/245$;					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30; $P(x = 0) = \frac{30x29}{50x49} = \frac{87}{245}$; $P(x = 1) = \frac{30x20x2}{50x49} = \frac{120}{245}$; $P(x = 2) = \frac{20x19}{50x49} = \frac{120}{245}$					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30; $P(x = 0) = \frac{30x29}{50x49} = \frac{87}{245}$; $P(x = 1) = \frac{30x20x2}{50x49} = \frac{120}{245}$; $P(x = 2) = \frac{20x19}{50x49} = \frac{38}{245}$ & Mean = $\frac{0x87}{245} + \frac{1x120}{245} + \frac{2x38}{245} = \frac{198}{245}$.					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30 ; $P(x = 0)=(30x29)/50x49 = 87/245$; $P(x = 1) = (30x20x2)/50x49 = 120/245$; $P(x = 2) = (20x19)/50x49 = 38/245$ & Mean = $0x87/245 + 1x120/245 + 2x38/245 = 198/245$. Importance: In order to have a peaceful environment both the values					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30 ; $P(x = 0) = (30x29)/50x49 = 87/245$; $P(x = 1) = (30x20x2)/50x49 = 120/245$; $P(x = 2) = (20x19)/50x49 = 38/245$ & Mean = $0x87/245 + 1x120/245 + 2x38/245 = 198/245$. Importance: In order to have a peaceful environment both the values are required patriotism and non-violence only patriotism with violence could be very dangerous. There can be multiple answers to the					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30 ; $P(x = 0) = (30x29)/50x49 = 87/245$; $P(x = 1) = (30x20x2)/50x49 = 120/245$; $P(x = 2) = (20x19)/50x49 = 38/245$ & Mean = $0x87/245 + 1x120/245 + 2x38/245 = 198/245$. Importance: In order to have a peaceful environment both the values are required patriotism and non-violence only patriotism with violence could be very dangerous. There can be multiple answers to the value based questions. Students may have their own opinion					
	of Non violence in patriotism. ANS: Let x denote the number of non-violent persons out of selected two. X can take values 0, 1, 2 non-violent 20: Violent patriotism: 30 ; $P(x = 0) = (30x29)/50x49 = 87/245$; $P(x = 1) = (30x20x2)/50x49 = 120/245$; $P(x = 2) = (20x19)/50x49 = 38/245$ & Mean = $0x87/245 + 1x120/245 + 2x38/245 = 198/245$. Importance: In order to have a peaceful environment both the values are required patriotism and non-violence only patriotism with violence could be very dangerous. There can be multiple answers to the					

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

A furniture firm manufactures chairs and tables, each requiring the use of three machines A, B and C. Production of one chair requires 2 hours on machine A, 1 hour on machine B and 1 hour on machine C. Each table requires 1 hour each on machine A and B and 3 hours on machine C. The profit obtained by selling one chair is Rs 30 while by selling one table the profit is Rs 60. The total time available per week on machine A is 70 hours, on machine B is 40 hours and on machine C is 90 hours. How many chairs and tables should be made per week so as to maximize profit? Formulate the problems as a L.P.P. and solve it graphically. Keeping the rural background in mind justify the 'values' to be promoted for the selection of the manually operated machine. Ans:

Let number of chairs to be made per week be x and tables be y

Thus we have to maximise P = 30 x + 60 y

Subject to $2x + y \le 70$

Q.29

 $x + y \le 40$

 $x + 3y \le 90$

 $x \ge 0y \ge 0$

Vertices of feasible region are

$$P (at A) = 30 (60) = 1800$$

$$P (at B) = 30 (15 + 50) = 1950$$

$$P (at C) = 30 (30 + 20) = 1500$$

$$P (at D) = 30 (35) = 1050$$

P is Maximum for 15 chairs and 25 tables.

the 'save environment' factor in mind the manually operated machine should be promoted so that energy could be saved. There can be multiple answers to the value based questions. Students may have their own opinion about answering them, there is no specific solution. Marks would be given for all sensible answers.

Visit us at: http://www.agyatgupta.com; Email:agyat99@gmail.com

Hey, Good Luck
For Your Exams.!