Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail

$$
\begin{gathered}
\text { TARGET MATHEMATICS } \\
\text { THE EXCELLENCE KEY } \\
\text { AGYAT GUPTA (M.Sc., M.Phil.) }
\end{gathered}
$$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

Q. 2	If $\sin ^{-1}:[-1,1] \rightarrow\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ is a function, then value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ is (a) $\frac{-\pi}{6}$ (b) $\frac{-\pi}{6}$ (c) $\frac{5 \pi}{6}$ (d) $\frac{7 \pi}{6}$ ANS : D
Q. 3	Given that $\left(\begin{array}{ll}9 & 6 \\ 3 & 0\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right)$.Applying elementary row transformation $R_{1} \rightarrow R_{1}-2 R_{2}$ on both sides, we get (a) $\left(\begin{array}{ll}3 & 6 \\ 3 & 0\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & -4 \\ 1 & 2\end{array}\right)$ (b) $\left(\begin{array}{ll}3 & 6 \\ 3 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right)$ © $\left(\begin{array}{cc}-3 & 6 \\ 3 & 0\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}3 & 0 \\ -3 & 2\end{array}\right)$ (d) $\left(\begin{array}{cc}-3 & 6 \\ 3 & 0\end{array}\right)=\left(\begin{array}{cc}-4 & 3 \\ 1 & 0\end{array}\right)\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right.$ ANS : B
Q. 4	If A and B are square matrices of order 3 such that $\|\mathrm{A}\|=-1$ and $\|\mathrm{B}\|$ $=4$, then what is the value of $\|3(\mathrm{AB})\|$? ANS :-108
Q. 5	Write the number of all one - one function from the set A with Cartesian number 4 to itself . ANS : $-4!=24$
NOTE:	Fill in the blanks in each of the Questions 6 to 8
Q. 6	The order \& degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\frac{4\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\left(\frac{d^{3} y}{d x^{3}}\right)}+\left(\frac{d^{3} y}{d x^{3}}\right)=x^{2}-1$ is....ANS : order $3 \&$ degree 2
Q. 7	The integrating factor for solving the linear differential equation $x \frac{d y}{d x}-y=x^{2} i$. \qquad ANS : 1/ x
Q. 8	Prove that a powerful bomb shot along the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ of fire will never hit a helicopter flying in the plane $2 x+4 y-4 z+11=0$. ans

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : $\underline{\text { 9425109601; 9425110860;9425772164(P) }}$

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : $\underline{\text { 9425109601; 9425110860;9425772164(P) }}$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

	: prove that line and plane are parallel to each other .
Q. 9	A bird is located at the point $\mathrm{A}(3,2,8)$ in space. It wants to move to the plane whose equation is given by $3 x+2 y+6 z+16=0$ in the shortest time. Find the distance she covered. Ans : 11 unit
Q. 10	The confidence gained by playing x games of tennis at a trial function is given by $C(x)=11+15 x+6 x^{2}-x^{3}$. Find the marginal confidence gained after playing 5 games. ans : 0
PART - B	
Q. 11	Let n be a fixed positive integer and R be the relation in Z defined as a R b if and only if $\mathrm{a}-\mathrm{b}$ is divisible by $\mathrm{n}, \forall a, b \in Z$. Show that R is an equivalence relation Ans: (i) Since $a \mathrm{R} a, \forall a \in \mathrm{Z}$, and because 0 is divisible by n, therefore R is reflexive. (ii) $a \mathrm{R} b \Rightarrow a-b$ is divisible by n, then $b-a$, is divisible by n, so $b \mathrm{R} a$. Hence R is symmetric. (iii) Let $a \mathrm{R} b$ and $b \mathrm{R} c$, for $a, b, c, \in \mathbf{Z}$. Then $a-b=n p, b-c=n q$, for some $p, q \in \mathbf{Z}$ Therefore, $a-c=n(p+q)$ and so $a \mathrm{R} c$. Hence R is reflexive and so equivalence relation.
Q. 12	Prove that $\cot ^{-1} 7+\cot ^{-1} 8+\cot ^{-1} 18=\cot ^{-1} 3$. ans:

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

$$
\begin{aligned}
& \text { LHS }=\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{8}+\tan ^{-1} \frac{1}{18} \\
& =\tan ^{-1} \frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7} \cdot \frac{1}{8}}+\tan ^{-1} \frac{1}{18}=\tan ^{-1}\left(\frac{15}{55}\right)+\tan ^{-1} \frac{1}{18} \\
& =\tan ^{-1} \frac{3}{11}+\tan ^{-1} \frac{1}{18}=\tan ^{-1} \frac{\frac{3}{11}+\frac{1}{18}}{1-\frac{3}{11} \frac{1}{18}}=\tan ^{-1} \frac{65}{195} \\
& =\tan ^{-1} \frac{1}{3}=\cot ^{-1} 3=\text { RHS }
\end{aligned}
$$

OR

Solve the equation
$\tan ^{-1}(2+x)+\tan ^{-1}(2-x)=\tan ^{-1} \frac{2}{3},-\sqrt{3}>x>\sqrt{3}$. ans :
Since

$$
\tan ^{-1}(2+x)+\tan ^{-1}(2-x)=\tan ^{-1} \frac{2}{3}
$$

Therefore,

$$
\tan ^{-1} \frac{(2+x)+(2-x)}{1-(2+x)(2-x)}=\tan ^{-1} \frac{2}{3}
$$

$$
\text { Thus } \quad \frac{4}{x^{2}-3}=\frac{2}{3}
$$

$\Rightarrow \quad x^{2}=9 \Rightarrow x= \pm 3$
There are 40 hardworking scholars in a class. Out of which 10 are sports-persons. Three scholars are selected at random out of them. Write the probability distribution for selected persons who are sportspersons. Find the mean of distribution. Explain the importance of sports

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : $\underline{\text { 9425109601; 9425110860;9425772164(P) }}$

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

	$f(x)=\left\{\begin{array}{cc}\frac{k \cdot \cos 2 x}{\pi-4 x} & \text { if } x \neq \frac{\pi}{4} \\ 5 & \text { if } x=\frac{\pi}{4}\end{array} \quad\right.$ is continuous at $x=\frac{\pi}{4}$. ans : Since f is continous at $x=\frac{\pi}{4}$, we have $\lim _{x \rightarrow \frac{\pi}{4}} f(x)=5$. Now $\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{k \cdot \cos 2 x}{\pi-4 x}=\lim _{y \rightarrow 0} \frac{k \cos 2\left(\frac{\pi}{4}-y\right)}{\pi-4\left(\frac{\pi}{4}-y\right)}$, where $\frac{\pi}{4}-x=y$, $=\lim _{y \rightarrow 0} \frac{k \cdot \cos \left(\frac{\pi}{2}-2 y\right)}{\pi-\pi+4 y}=\lim _{y \rightarrow 0} \frac{(k \sin 2 y)}{2 \cdot 2 y}=\frac{k}{2}$ Therefore, $\frac{k}{2}=5 \Rightarrow k=10$.
Q. 16	If $x=\frac{1+\log t}{t^{2}}, y=\frac{3+2 \log t}{t}$ prove that $y y_{1}-2 x y_{1}{ }^{2}=1$. OR If $y=e^{a \cos ^{-1} x}$, Show that $\left(1-x^{2}\right) \frac{d^{2} y}{d^{2} x}-s \frac{d y}{d x}-a^{2} y=0$. $y=e^{a \cos ^{-1} x} \Rightarrow \frac{d y}{d x}=e^{a \cos ^{-1} x} \frac{(-a)}{\sqrt{1-x^{2}}}$ ans: Therefore, $\begin{equation*} \sqrt{1-x^{2}} \frac{d y}{d x}=-a y . \tag{1} \end{equation*}$ Differentiating again w.r.t. x, we get

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com
$\sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}-\frac{x}{\sqrt{1-x^{2}}} \frac{d y}{d x}=-\frac{a d y}{d x}$
$\Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=-a \sqrt{1-x^{2}} \frac{d y}{d x}$
$=-a(-a y) \quad[$ from 1]

Hence $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$
Q. 17 Find the equation of the tangent to the curve $x=\sin 3 t, y=\cos 2 t$ at $t=\frac{\pi}{4}$.ans : $\frac{d x}{d t}=+3 \cos 3 t, \frac{d y}{d t}=-2 \sin 2 t$
Therefore, $\frac{d y}{d x}=-\frac{2 \sin 2 t}{3 \cos 3 t}$, and $\left(\frac{d y}{d x}\right)_{t-\frac{\pi}{4}}=\frac{-2 \sin \frac{\pi}{2}}{3 \cos 3 \frac{\pi}{4}}=\frac{-2}{3 \cdot\left(-\frac{1}{\sqrt{2}}\right)}=\frac{2 \sqrt{2}}{3}$
Also $x=\sin 3 t=\sin 3 \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ and $y=\cos 2 t=\cos \frac{\pi}{2}=0$.
Therefore, \quad Point is $\left(\frac{1}{\sqrt{2}}, 0\right)$
Hence, equation of tangent is $y-0=\frac{2 \sqrt{2}}{3}\left(x-\frac{1}{\sqrt{2}}\right)$ Therefore,

$$
2 \sqrt{2} x-3 y-2=0
$$

OR

Find the intervals in which the function

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com
$f(x)=\sin ^{4} x+\cos ^{4} x, 0<x<\frac{\pi}{2}$, is increasing or decreasing .ans : $f^{\prime}(x)=4 \sin ^{3} x \cos x-4 \cos ^{3} x \sin x$
$=-4 \sin x \cos x\left(\cos ^{2} x-\sin ^{2} x\right)$
$=-\sin 4 x$. Therefore,
$f^{\prime}(x)=0 \Rightarrow 4 x=n \pi \Rightarrow x=n \frac{\pi}{4}$

Now, for $0<x<\frac{\pi}{4}$,
$f^{\prime}(x)<0$
Therefore, f is strictly
decreasing in ${ }^{\left(0, \frac{\pi}{4}\right)}$ Similarly, we can show that f is strictly increasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

| Q. 18 | Evaluate $\int_{0}^{\frac{\pi}{6}} \sin ^{4} x \cos ^{3} x d x$ | Ans $\quad \mathrm{I}=\int_{0}^{\frac{\pi}{6}} \sin ^{4} x \cos ^{3} x d x$ |
| :--- | :--- | :--- | :--- |
| | $=\int_{0}^{\frac{\pi}{6}} \sin ^{4} x\left(1-\sin ^{2} x\right) \cos x d x$ | $=\int_{0}^{\frac{1}{2}} t^{4}\left(1-t^{2}\right) d t$, where $\sin x=t$ | $=\int_{0}^{\frac{1}{2}}\left(t^{4}-t^{6}\right) d t=\left[\frac{t^{5}}{5}-\frac{t^{7}}{7}\right]_{0}^{\frac{1}{2}}=\frac{1}{5}\left(\frac{1}{2}\right)^{5}-\frac{1}{7}\left(\frac{1}{2}\right)^{7}=\frac{1}{32}\left(\frac{1}{5}-\frac{1}{28}\right)=\frac{23}{4480}$

Q. 19 Evaluate $\int \frac{3 x+1}{2 x^{2}-2 x+3} d x \quad$ Ans: $\quad \mathrm{I}=\int \frac{3 x+1}{2 x^{2}-2 x+3} d x=\int \frac{\frac{3}{4}(4 x-2)+\frac{5}{2}}{2 x^{2}-2 x+3} d x$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

	$\begin{aligned} & =\frac{3}{4} \int \frac{4 x-2}{2 x^{2}-2 x+3} d x+\frac{5}{4} \int \frac{1}{x^{2}-x+\frac{3}{2}} d x=\frac{3}{4} \log \left\|2 x^{2}-2 x+3\right\|+\frac{5}{4} \frac{2}{\sqrt{5}} \tan ^{-1} \frac{2 x-1}{\sqrt{5}}+c \\ & =\frac{3}{4} \log \left\|2 x^{2}-2 x+3\right\|+\frac{\sqrt{5}}{2} \tan ^{-1} \frac{2 x-1}{\sqrt{5}}+c \quad \text { OR } \quad \mathrm{I}=\int x(\log x)^{2} \cdot d x=\int(\log x)^{2} x d x \\ & \int x(\log x)^{2} d x . \text { ans } \quad: \quad=\frac{x^{2}}{2}(\log x)^{2}-\int \log x \cdot x d x \\ & =(\log x)^{2} \frac{x^{2}}{2}-\int 2 \log x \frac{1}{x} \frac{x^{2}}{2} d x \\ & =\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right] \\ & =\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+c \end{aligned}$
Q. 20	Find a particular solution of the differential equation: $2 y e^{\frac{x}{y}} d x+\left(y-2 x e^{\frac{x}{y}}\right) d y=0$, given that $\mathrm{x}=0$ when $\mathrm{y}=$ 1.ans: Given differential equation can be written as $\frac{d x}{d y}=\frac{2 x e^{\frac{x}{y}}-y}{2 y \cdot e^{\frac{x}{y}}}$ Putting $\frac{x}{y}=v \Rightarrow x=v y \Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}$ Therefore, $v+y \frac{d v}{d y}=\frac{2 v y e^{v}-y}{2 y e^{v}}=\frac{2 v e^{v}-1}{2 e^{v}}$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

$$
y \frac{d v}{d y}=\frac{2 v e^{v}-1}{2 e^{v}}-v \quad \text { Hence } 2 e^{v} d v=-\frac{d y}{y}
$$

$$
\Rightarrow 2 e^{v}=-\log |y|+c \quad \text { or } 2 e^{\frac{x}{y}}=-\log |y|+c
$$

$x=0, y=1 \Rightarrow \mathrm{C}=2$ Therefore, the particular solution is

$$
\frac{x}{y}
$$

$$
\begin{array}{|l}
2 e^{\bar{y}}=-\log |y|+2 \\
\hline \text { If } \vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}
\end{array}
$$

If $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$, then find the projection of $\vec{b}+\vec{c}$ along \vec{a}. What are benefits of speaking

$$
\text { truth?ans } \vec{b}+\vec{c}=(\hat{i}+2 \hat{j}-3 \hat{k})+(2 \hat{i}-\hat{j}+4 \hat{k})=3 \hat{i}+\hat{j}+\hat{k}
$$

$$
\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k} \text { Projection of }(\vec{b}+\vec{c}) \text { along } \vec{a}=\frac{(\vec{b}+\vec{c}) \cdot \vec{a}}{|\vec{a}|} \text { is }
$$

$$
\frac{6-2+1}{\sqrt{4+4+1}}=\frac{5}{3} \text { units }
$$

Ans: In case, you always speak the truth
(a)People will always believe you. (b)There is no more stress on you.
(c) You will have a good recognition. There can be multiple answers to the value based questions. Students may have their own opinion about answering them, there is no specific solution. Marks would be given for all sensible answers.
Q. 22 Determine the vector equation of a line passing through (1, 2,-4) and perpendicular to the two lines $\vec{r}=(8 \hat{i}-16 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})$ \& $(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 i+8 \hat{j}-5 \hat{k})$. ans: A vector perpendicular to the two lines is given as

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

	$\begin{aligned} & (3 \hat{i}-16 \hat{j}+7 \hat{k}) \times(3 \hat{i}+8 \hat{j}-5 \hat{k})=\left\|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{array}\right\| \\ & =24 \hat{i}+36 \hat{j}+72 \hat{k} \text { or } 12(2 \hat{i}+3 \hat{j}+6 \hat{k}) \text { Therefore, Equation of } \\ & \text { required line is } \vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \end{aligned}$
	PART - C
Q. 23	State the condition for matrix A is invert able .Find A^{-1}, where $\mathrm{A}=$ $\left(\begin{array}{ccc}4 & 1 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & -2\end{array}\right)$.Hence solve the following system of equations: $4 x+2 y+$ $3 \mathrm{z}=2, \mathrm{x}+\mathrm{y}+\mathrm{z}=1,3 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=5$, ans: $\|\mathrm{A}\|=4(-3)-1(-7)+3(-$ $1)=-12+7-3=-8 \quad$ Therefore, $A^{-1}=-\frac{1}{8}\left(\begin{array}{rrr}-3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2\end{array}\right)$ Given equations can be written as $\left(\begin{array}{rrr} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 2 \\ 1 \\ 5 \end{array}\right)$ $\begin{aligned} \Rightarrow \mathrm{A}^{\prime} \cdot \mathrm{X}=\mathrm{B} \Rightarrow \mathrm{X} & =\left(\mathrm{A}^{,^{-1}}\right) \mathrm{B} \\ & =\left(\mathrm{A}^{-1}\right)^{\prime} \mathrm{B} \end{aligned} \Rightarrow\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{-1}{8}\left(\begin{array}{ccc} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{array}\right)\left(\begin{array}{l} 2 \\ 1 \\ 5 \end{array}\right)$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

$$
=-\frac{1}{8}\left(\begin{array}{cccc}
-6 & +7 & -5= & -4 \\
10 & -17 & -5= & -12 \\
-4 & +2 & +10= & 8
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{3}{2} \\
-1
\end{array}\right) \quad \text { Therefore, } x=\frac{1}{2}, y=\frac{3}{2}, z=-1
$$

OR

Discuss whether the matrix A is invert able or not if invert able then using elementary transformations, find A^{-1}, where

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right) \text {. } \\
& \text { Writing } A=\left(\begin{array}{ccc}
1 & 2 & -2 \\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{A} \\
& R_{2} \rightarrow R_{2}+R_{1} \Rightarrow\left(\begin{array}{ccr}
1 & 2 & -2 \\
0 & 5 & -2 \\
0 & -2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) A \\
& R_{2} \rightarrow R_{2}+2 R_{3} \Rightarrow\left(\begin{array}{ccr}
1 & 2 & -2 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) A \\
& R_{3} \rightarrow R_{3}+2 R_{2} \Rightarrow\left(\begin{array}{rrr}
1 & 2 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right)
\end{aligned}
$$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

	$\begin{aligned} & R_{1} \rightarrow R_{1}+2 R_{3} \Rightarrow\left(\begin{array}{lll} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)=\left(\begin{array}{ccc} 5 & 4 & 10 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{array}\right) A \\ & R_{1} \rightarrow R_{1}-2 R_{2} \Rightarrow\left(\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)=\left(\begin{array}{lll} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{array}\right) A \Rightarrow A^{-1}=\left(\begin{array}{lll} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{array}\right) \end{aligned}$
Q. 24	Let $A P$ and $B Q$ be two vertical poles at points A and B, respectively. If $A P=16 \mathrm{~m}, \mathrm{BQ}=22 \mathrm{~m}$ and $\mathrm{AB}=20 \mathrm{~m}$, then find the distance of a point R on AB from the point A such that $R P^{2}+R Q^{2}$ G.
Q. 25	Evaluate $\int_{1}^{3}\left(3 x^{2}+2 x+5\right) d x$ by the method of limit of sum.ans $\begin{aligned} & \mathrm{I}=\int_{1}^{3}\left(3 x^{2}+2 x+5\right) d x=\int_{1}^{3} f(x) d x \\ & =\lim _{h \rightarrow 0} h[f(1)+f(1+h)+f(1+2 h)+\ldots \ldots+f(1+(n-1) h)] \ldots \ldots \end{aligned}$ where $h=\frac{3-1}{n}=\frac{2}{n}$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

$$
\begin{aligned}
& f(1)=3+2+5=10 \\
& f(1+h)=3+3 h^{2}+6 h+2+2 h+5=10+8 h+3 h^{2} \\
& f(1+2 h)=3+12 h^{2}+12 h+2+4 h+5=10+8.2 \cdot h+3.2^{2} \cdot h^{2} \\
& f(1+(n-1) h)=10+8(n-1) h+3(n-1)^{2} \cdot h^{2} \\
& \mathrm{I}=\lim _{n \rightarrow \infty} h\left[10 n+8 h \frac{n(n-1)}{2}+3 h^{2} \frac{n(n-1)(2 n-1)}{6}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left[10 n+\frac{16}{n} \frac{n(n-1)}{2}+\frac{12}{n^{2}} \frac{n(n-1)(2 n-1)}{6}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left[10 n+8(n-1) \frac{2}{n}(n-1)(2 n-1)\right] \\
& =\lim _{n \rightarrow \infty} 2\left[10+8\left(1-\frac{1}{n}\right)+2\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)\right] \\
& =2[10+8+4]=44
\end{aligned}
$$

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

Using integration, find the area of the triangle bounded by the lines $\mathrm{y}=$ $2 \mathrm{x}+1, \mathrm{y}=3 \mathrm{x}+1$ and $\mathrm{x}=4$. Ans Required Area $=\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x=8$ unit 2
Q. 27 A line with direction numbers $\langle 2,7,-5\rangle$ is drawn to intersect the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}$ and $\frac{x+3}{-3}=\frac{y-3}{2}=\frac{z-6}{4}$. Find the co ordinates of the points of intersection and the length intercepted o it. ANS. $(2,8,-3),(0,1,2) ; \sqrt{78}$.

OR

A bird at $\mathrm{A}(7,14,5)$ in space wants to reach a point P on the plane $2 \mathrm{x}+$ $4 y-z=2$ when AP is least. Find the position of P and also the distance AP travelled by the bird. Ans : find foot of perpendicular. $\mathrm{P}(1,2,8)$. Also AP $=\sqrt{189}=3 \sqrt{21}$
Q. 28

There is a group of 50 people who are patriotic out of which 20 believe in non violence. Two persons are selected at random out of them, write the probability distribution for the selected persons who are non violent. Also find the mean of the distribution. Explain the importance of Non violence in patriotism. ANS : Let x denote the number of nonviolent persons out of selected two. X can take values $0,1,2$ nonviolent 20: Violent patriotism: 30; $\mathrm{P}(\mathrm{x}=0)=(30 \times 29) / 50 \times 49=87 / 245$; $\mathrm{P}(\mathrm{x}=1)=(30 \times 20 \times 2) / 50 \times 49=120 / 245 ; \mathrm{P}(\mathrm{x}=2)=(20 \times 19) / 50 \times 49=$ $38 / 245$ \& Mean $=0 \times 87 / 245+1 \times 120 / 245+2 \times 38 / 245=198 / 245$.
Importance: In order to have a peaceful environment both the values are required patriotism and non-violence only patriotism with violence could be very dangerous. There can be multiple answers to the value based questions. Students may have their own opinion about answering them, there is no specific solution. Marks would be given for all sensible answers.

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com
A furniture firm manufactures chairs and tables, each requiring the use of three machines A, B and C. Production of one chair requires 2 hours on machine A, 1 hour on machine B and 1 hour on machine C. Each table requires 1 hour each on machine A and B and 3 hours on machine C. The profit obtained by selling one chair is Rs 30 while by selhmg one table the profit is Rs 60 . The total time available per week on machine A is 70 hours, on machine B is 40 hours and on machine C is 90 hours. How many chairs and tables should be made per week so as to maximize profit? Formulate the problems as a L.P.P. and solve it graphically. Keeping the rural background in mind justify the 'values' to be promoted for the selection of the manually operated machine. Ans:
Let number of chairs to be made per week be x and tables be y
Thus we have to maximise $\mathrm{P}=30 x+60 y$
Subject to $\quad 2 x+y \leq 70$

$$
x+y \leq 40
$$

$$
x+3 y \leq 90
$$

$$
x \geq 0 y \geq 0
$$

Vertices of feasible region are

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : 9425109601; 9425110860;9425772164(P)

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

Fig. 2.4
$\mathrm{A}(0,30), \mathrm{B}(15,25), \mathrm{C}(30,10), \mathrm{D}(35,0)$

$$
\begin{aligned}
& P(\text { at } A)=30(60)=1800 \\
& P(\text { at } B)=30(15+50)=1950 \\
& P(\text { at C })=30(30+20)=1500 \\
& P(\text { at D })=30(35)=1050
\end{aligned}
$$

P is Maximum for 15 chairs and 25 tables.
ANS Keeping the 'save environment' factor in mind the manually operated machine should be promoted so that energy could be saved. There can be multiple answers to the value based questions. Students may have their own opinion about answering them, there is no specific solution. Marks would be given for all sensible answers.

Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

